Massachusetts Technology Assessment Committee (MTAC)

Adaptive Photonic Controller			Date reviewed: 11/12/2020			11/12/2020
Description of Technology		Energy Saving Opportunity				
The Adaptive Photonic Controller is a device that varies the speed of single-phase fan motors to match air circulation requirements. To achieve this, the device uses sensors and photonic processing techniques to manage/regulate the voltage supplied to the motor. Savings are achieved from fan speed reduction and control.		Sector(s):		Ø	Residential Image: Commercial & Industrial	
		Applicability Criteria:		Single speed, single phase motors < 5hp		
		Efficiency Improvement:		Motor speed reduction and control		
		Energy (%) Savings Potential:		30% - 50%		
		Demand (%) Keduction Potential: ~45%				
Strengths		Weakness				
 No digital to analogue or analogue to digital conversions Less noise Less harmonics 		 Only suitable for single phase motors Not suitable for motors > 5hp Economics need to be evaluated based hours of use and motor Hp 				
Third Party Analysis/ Previous MTAC Reviews		Suppliers Know to MTAC	wn	MTAC Status		
 ConEdison Environmental Test Laboratory EME Consulting Engineers (NYSERDA) SUNY Oneonta McQuay Cooling Tests Purdue University Tests ConEdison Tests by ERS 		Aclectic (A Division of Custom Electronics)		Acknowledged to have energy savings potential and recommended to individual PA for their own EE program consideration		
Market Development Issues						
Cost:	\$350 - \$450	8		Della	Ander	-
Market Risk and Barriers: Minimal Risk Time to Market: Currently on market Simple Pay-back: (Years) 1 - 4		. 9	Access	ACC-	-A5	
		The Silver Sta	BAt	PASS	Energy Use	N